
Yes

No

Informed Consent

Please read the following informed consent form carefully before participating in this validation survey.

The purpose of this research study is to observe how developers create, manage, and recall contextual information when they are
working on their “everyday” development task. Understanding the process will inform future tool development in creating intelligent
and contextualized support for developers.
 
Results of this study may be used for fulfilling student dissertation and academic publications. This project is funded by National
Science Foundation (NSF).
 
Activities: The study previously included observing you working on our regular day-to-day tasks. We are now conducting follow-up
validation surveys to confirm our observations and results from that study. You will be asked to read and respond to a series of
questions regarding your organization of programming tasks.
 
Study duration: The validation survey is expected to take 10-15 minutes to complete.
 
Storage and Future use of data: Data will be stored on protected drive on the researcher’s computer and uploaded to a password-
protected storage service offered/provisioned/procured by <<anonymized field>>. Access to data will be restricted to the
researchers listed on the research protocol. Any data we collect will be kept confidential adhering to the guidelines of Institutional
Review Board (a committee that reviews and approves research studies involving human subjects) and the agreements we make with
your organization. All data will be anonymized as soon as possible.

Risks: There are no foreseeable risks to participating.

Benefits: There are no direct benefits for participating in the study. However, the study may influence the intelligence of future
development support tools.
 
Compensation: There is no monetary compensation for participating in the study
 
Participation: Your participation in this study is voluntary.  You are free to withdraw at any time. If you choose to withdraw from the
study before it ends, your data from the session we will not be used. Your participation or non-participation will not have an impact on
your relationship with <<anonymized field>> or your job.
Questions If you have any questions about this research project, please contact <<anonymized field>>, at <<anonymized
field>> or by email at <<anonymized field>>. If you have questions about your rights or welfare as a participant, please
contact the <<anonymized field>>, at <<anonymized field>> or by email at <<anonymized field>>.
 
Your acceptance indicates that this study has been explained to you, that your questions have been answered, and that you agree to
take part in this study.

I understand and consent to participate in this study.

Information Abstraction

For the following four questions, please read the description of a task that Charlie, a fictional software developer, needs to complete.
To complete the task, Charlie had to take multiple steps that are listed vertically on the left side. These task steps are ordered based
on time.

We have also listed sets of information elements that may be relevant to the task at the top.
 
For each task step, select ALL information elements that you consider relevant to complete the step. An information element can be
relevant to multiple task steps OR none.

1 of 8 11/14/18, 1:31 PM



Task Description: Charlie needs to configure the development environment prior to coding.

     

REPL error
message

Github Comment
for CIDER version

Email discussing
project status

meeting
schedule

Code snippet
from email

containing query
structure

Query structure in file
query_interface.clj

Charlie launches a REPL
instance in a terminal
window.

   

Charlie locates an email
from a colleague which
describes Clojure query
statements.

   

The REPL instance returns
an error.

   

Charlie updates the CIDER
version (Clojure Interactive
Development Environment
that Rocks).

   

Charlie launches a REPL
instance in a terminal
window.

   

Charlie opens the email from
a colleague which describes
Clojure query statements.

   

Charlie locates a Clojure file
that contains a query
statement.

   

Task Description: Charlie needs to implement a new experimental MonkeySort algorithm in Java.

     

Syntax highlights
indicating

unknown variable
name

Java compile error
message
indicating

reference error

Java compile error
message

indicating memory
out of bounds

Java data
structures for

storing incoming
data

Line count for
total size of Java

file

Charlie implements a naive
initial version of the algorithm.

   

Charlie executes the code in a
terminal window.

   

The terminal returns a
reference error for a unknown
variable name.

   

Charlie updates the variable
names in the algorithm code.

   

Charlie executes the code in a
terminal window.

   

The terminal returns a memory
overflow error.

   

Charlie updates the storage
portion of the algorithm code.

   

Charlie executes the code in a
terminal window.

   

2 of 8 11/14/18, 1:31 PM



Task Description: Charlie needs to review code from a colleague before integrating it.

     

Editor inline
documentation

box for hashSort

Editor inline
documentation
box for setPivot

External
documentation for

sortAll

Command line
output from

running test suite

Blog post
describing

reverseSort
algorithm

Charlie examines a new sortAll
command that uses a
command called hashSort.

   

Charlie opens the definition of
the hashSort command.

   

Charlie examines the definition
of hashSort and finds a
setPivot command.

   

Charlie opens the definition of
the setPivot command.

   

Charlie examines the definition
of the setPivot command.

   

Charlie returns to the
definition of hashSort and
finishes examining the
definition.

   

Charlie returns to the
definition of sortAll and
finishes examining the
definition.

   

3 of 8 11/14/18, 1:31 PM



Task Description: Charlie needs to debug code which is throwing errors after adding a new function.

     

Error
message
indicating
unknown

hover_node
variable

Error
message
indicating
memory
overflow

Error message
indicating no
id value on

select_node
element

Code definitions within
hierarchyService.ts

Code definitions within
interactionService.ts

Charlie creates a
hover_node variable in
hierarchyService.ts.

   

Charlie compiles and
executes the project.

   

Charlie adds an import for a
storage library in
hierarchyService.ts.

   

Charlie compiles and
executes the project.

   

Charlie copies an import
library from
interactionService.ts
and pastes into
hierarchyService.ts.

   

Charlie compiles and
executes the project.

   

Charlie writes a new method
to set the hierarchyID
variable.

   

4 of 8 11/14/18, 1:31 PM



Task Description: Charlie needs to implement the output methods for working with a hashmap data structure.

     

Clojure API
documentation for

some()

Clojure API
documentation for
contains()

Command line
output

Clojure API
documentation for

has()

Code definitions
for output method

using
contains()

Charlie creates an output
method that uses the some()
function.

   

Charlie compiles and executes
the project.

   

Charlies creates a different
version of the output method
that uses the contains()
function.

   

Charlie removes redundant
looping code from the output
method that uses some().

   

Charlie compiles and executes
the project.

   

Charlie removes redundant
looping code from the output
method that uses
contains().

   

Charlie copies a portion of code
from the output method that
uses some() and removes the
method.

   

Charlie pastes into the output
method that uses
contains().

   

Patterns in Task Structuring

For the following five (5) questions, please read the descriptions of the patterns in which developers tend to organize their
programming tasks. For each pattern, please select the option that most closely represents the frequency that you use the pattern.

After learning about the five patterns, please rank them in order of *most* to *least* frequently used patterns in your normal tasks.
Based on your ranked responses, we will  ask you to describe when and why you use your most frequent and least frequent patterns.

Please read the descriptions of the patterns that Charlie uses to organize his programming tasks. 

For each pattern, please select the option that most closely represents how frequently you use the pattern.

5 of 8 11/14/18, 1:31 PM



Sequential Pattern: A sequence of subtasks. Charlie, completes one subtask to move on to the next subtask.
 

                                              

Never Rarely Sometimes Most of the time

 Grounding Pattern:  A return to a previous subtask to evaluate progress. After writing code for a bug fix, Charlie evaluates whether
the new code works correctly in the larger program.
 

                                

Never Rarely Sometimes Most the time

Recursion Pattern: Tasks are tackled in nested steps. Charlie needs to complete the smaller subtasks to continue with the larger.
 

                                             

Never Rarely Sometimes Most of the time

6 of 8 11/14/18, 1:31 PM



Alternating Pattern: Working on two subtasks simultaneously, where both subtasks are alternate solutions to the same problem. 

                                                  

 

Never Rarely Sometimes Most of the time

Concurrent Pattern: Working on two subtasks at the same time. Charlie offloads one subtask as a running process. While waiting for
that process to complete he works on another subtask.

                                            

Never Rarely Sometimes Most of the time

7 of 8 11/14/18, 1:31 PM



 
Rank the following patterns by dragging them up and down based on the frequency in which you use each pattern. (1 - most
frequent,  5 - least frequent)

For your most frequent pattern, ${q://QID1/ChoiceGroup/ChoiceWithLowestValue}, when do you use this pattern?

For your most frequent pattern, ${q://QID1/ChoiceGroup/ChoiceWithLowestValue}, why do you use this pattern?

For your least frequent pattern, ${q://QID1/ChoiceGroup/ChoiceWithHighestValue}, when do you use this pattern? If never,
please indicate when you would possibly use this pattern.

For your least frequent pattern, ${q://QID1/ChoiceGroup/ChoiceWithHighestValue}, why do you use this pattern? If never, please indicate why you do
not use this pattern.

Alternating

Sequential

Grounding

Recursion

Concurrent

8 of 8 11/14/18, 1:31 PM


